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Spotlights, Floodlights, and the Magic Number Zero: Simple 
Effects Tests in Moderated Regression 

STEPHEN A. SPILLER, GAVAN J. FITZSIMONS, JOHN G. LYNCH JR., and GARY H. 

MCCLELLAND 

Web Appendix A 

This web appendix is intended to serve as a standalone reference guide for conducting 

spotlight and floodlight analyses after one has read the main text. These materials repeat and 

expand upon the two cases discussed in the text and add three additional cases. These building 

blocks can be combined to examine spotlight or floodlight analyses of any linear model. An 

analysis template for the base case (Case #0: 2 x Continuous) is given in Table W1. 

Case #1: 2 x Continuous when the Manipulation of Z is Within Subjects 

Imagine a version of our original example with two levels of the manipulated factor Z (0 

= confederate took 2 candies, 1 = confederate took 30 candies,) and a continuous measure of X = 

BMI. This time, however, let Z be a repeated measures factor. In this case, one simply creates a 

contrast score for each subject showing the effect of the manipulation for that subject: Zcontrast = 

Y30 - Y2 (see Judd, McClelland, and Ryan 2009 or Keppel and Wickens 2004); one could 

similarly create contrast scores for within-subject designs with more than 2 levels. One then 

analyzes the Zcontrast scores as a function of X = BMI: 

(W1)  Zcontrast = a + bX 

Extending the principle of the magic number zero, the test of the intercept, a, in this 

analysis is the predicted Zcontrast score when X = 0. The coefficient b now is equivalent to a test of 

the interaction of X with Z in the original design. To create a spotlight test of the effect of the 

repeated factor Z at the borderline between normal and overweight, create X’ = X – 25. Rerun 

the regression Zcontrast = a’ + b’X’. Now the test of the intercept a’ is the effect of the repeated 
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factor Z at the new zero point associated with the chosen level of X. An analysis template for 

Case 1 is given in Table W2. 

 

Case #2: 2 x 2 x Continuous 

Often, one may be interested in how a continuous variable moderates a 2 x 2 interaction, 

resulting in a three-way interaction. For example, in addition to manipulating quantity taken, we 

might also manipulate the perceived health of the item being considered (candy vs. granola, as in 

Study 1 of McFerran et al. 2010), with all factors manipulated between-subjects. The prediction 

might be that attenuation of assimilation only occurs for unhealthy food because participants are 

cued to be more vigilant when food is unhealthy than when it is healthy. (McFerran et al. found 

this not to be the case.) The model for this design is: 

(W2) Y = a + bZ + cW + dX + eZW + fZX + gWX + hZWX 

Z and X are coded the same as they were in the opening example, and W is coded 0 for 

candy and 1 for granola. If the parameter h testing the three-way interaction is significant, it 

becomes relevant to test the simple interaction of two of the variables at different levels of the 

third variable. The coefficient e tests the simple ZW interaction when X = 0. (It does not test the 

ZW interaction that would be evident in plotting the ZW cell means, collapsing over levels of X.) 

The coefficient f tests the simple ZX interaction when W = 0. The coefficient g tests the simple 

WX interaction when Z = 0. To follow up a simple two-way interaction, one tests the simple-

simple effect of one of the variables holding constant the other two. In this model, b represents 

the simple-simple effect of Z when W = 0 and X = 0; c represents the simple-simple effect of W 

when X = 0 and Z = 0; and d represents the simple-simple effect of X when Z = 0 and W = 0.  
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Zero is a magic number in this analysis too. Every coefficient is interpreted as the effect 

of that variable (or interaction) when all variables with which that term interacts are set to 0 

because they drop out of the model. Suppose that we obtained a significant three-way interaction 

ZWX and wanted to follow up with tests of the simple ZW interaction at meaningful levels of X. 

We would recode X’ = X – 25 just as in each of the previous examples. When X’ = 0, the new 

coefficient on ZW, e’, represents the simple interaction between quantity taken and perceived 

healthiness when X’ = 0 which corresponds to a BMI of 25.  

Spotlight analysis in a 2 x 2 x Continuous design requires application of the exact same 

principle used in the previous cases: recoding variables such that 0 represents the value of a 

variable at which you are interested in the simple effect of the other variables. An analysis plan 

for Case 2 is given in Table W3. 

If one is interested in testing a 2 x 2 x Continuous design where the second factor, W, is 

manipulated within-subject, some effects are within-subject effects and some effects are 

between-subject effects. To test these, one can combine the strategies from Case #1 and Case #2. 

To examine the between-subject effects (“main effects” of Z, X, and the ZX interaction), 

calculate WAverage as in W3 and regress it on Z, X, and ZX as in W4. 

(W3) WAverage = (YW=1 + YW=0) / 2 

(W4) WAverage = a + bZ + cX + dZX 

a represents the estimate of Y where Z = 0 and X = 0, averaged across levels of W. b 

represents the simple effect of Z on Y at X = 0, averaged across levels of W. c represents the 

simple effect of X on Y at Z = 0, averaged across levels of W. d represents how the effect of Z 

on Y changes with X, averaged across levels of W. One could similarly calculate ZAverage in Case 
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#1, though it is unlikely to be a useful metric if one is interested in the within-subject 

manipulation. 

To examine the within-subject effects (all terms involving W), calculate WContrast as in 

W5 and regress it on Z, X, and ZX as in W6. 

(W5) WContrast = YW=1 – YW=0 

(W6) WContrast = a’ + b’Z + c’X + d’ZX 

a' represents the simple simple effect of W at Z = 0 and X = 0. b' represents the simple 

interaction of Z with W on Y at X = 0. c' represents the simple interaction of X with W on Y at Z 

= 0. d' represents the three-way interaction of Z, X, and W on Y. 

Case #3: 3 x Continuous 

Imagine that we are replicating the original 2 x Continuous example with a hypothetical 

variant of McFerran et al. (2010). Instead of manipulating Z at two levels, we add a third 

condition in which the confederate stands next to the candy but never has an opportunity to take 

any candy. Now there are three between-subjects conditions: take a large quantity; take a small 

quantity; no opportunity to take any quantity. Will participants be affected by the mere presence 

of another when that confederate does not have an opportunity to make a choice? This requires a 

slightly different analysis plan, but uses the same basic principle of the magic number zero. Of 

course, one needs k-1 dummy variables (or contrast coded variables) to represent k levels of a 

categorical variable. With a 3-level variable, two dummy variables are required. For our example, 

Z1 is coded 1 for small quantity, 0 for large quantity or no opportunity, and Z2 is coded 1 for 

large quantity, 0 for small quantity or no opportunity. We also need two variables to represent 

the 2 degrees of freedom interactions, Z1X and Z2X. The base model for this design is: 

(W7) Y = a + b1Z1 + b2Z2 + cX + d1Z1X + d2Z2X 
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This equation can be rewritten as: 

(W7a) Y = (a + cX) + (b1 + d1X)Z1 + (b2 + d2X)Z2 

Written this way, it becomes clear that the effect of Z1 is (b1 + d1X), so b1 represents the 

effect of Z1 (i.e., the difference between the small quantity and no opportunity conditions) when 

X is equal to 0; similarly, the effect of Z2 is (b2 + d2X), so b2 represents the effect of Z2 (i.e., the 

difference between the large quantity and no opportunity conditions) when X is equal to 0. 

Interpreting X also requires great care. The equation can be rewritten again as: 

(W7b) Y = (a + b1Z1 + b2Z2) + (c + d1Z1 + d2Z2)X 

Writing it in this form makes it clear that the effect of X is (c + d1Z1 + d2Z2), so c 

represents the effect of X when Z1 and Z2 are both equal to 0. In the current example, this means 

that c represents the simple slope of X for the no opportunity condition. Table W4A presents the 

statistical analysis of illustrative fictitious data (N = 150; MBMI = 21.81, SDBMI = 2.91). These are 

the same data for the small and large quantity groups presented in the base case, with a third 

group of observations added for the condition in which there is no opportunity for the 

confederate to take any candy. With this coding, the slope for X (BMI) pertains only to the no 

opportunity group, revealing a flat line (c = 0.02, t(144) = 0.12, p = .90).  

 To understand the effect of small quantity vs. no opportunity or large quantity vs. no 

opportunity, it is important to recode X—otherwise b1 and b2 represent the effects for a 

confederate with a BMI of 0. Setting X’ = X – 25 and examining the coefficients on Z1 and Z2, 

we can consider the effects of confederates who are borderline overweight. Table W4B presents 

the results after the recoding of X. Estimated for confederates with BMI = 25 (i.e., X’ = 0), 

taking a larger quantity of candies significantly increased the number of candies taken by the 

observer (b2’ = 3.12, t(144) = 2.98, p = .003) relative to the no opportunity condition, whereas 
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taking a smaller quantity of candies did not significantly decrease the number of candies taken 

by the observer relative to the no opportunity condition (b1’ = -1.27, t(144) = -1.30, p = 0.19).  

In comparing Tables W4A and W4B, note that the recoding of X did not affect either the 

estimates or the tests of the slope for X or either of the products involving X. The last three rows 

of the two tables are identical. The only change from recoding X is that now the differences 

between the three groups are measured at BMI = 25 instead of the substantively meaningless 

BMI = 0.  

Also note that although the data for the large and small quantity groups are the same as 

before, the product terms X’Z1 and X’Z2 do not show significant interactions. Even though the 

slopes for large and small quantity groups differ significantly, that is not tested by the present 

coding. Instead, the slope of each group is tested against the slope for the no opportunity group, 

which has a slope near zero between the other two slopes. If we want to analyze the difference 

between the small quantity and large quantity conditions, we would recode Z2 such that it is 

coded 1 for no opportunity and 0 for small quantity or large quantity. The coefficient on Z1 

would then represent the difference between the small quantity and large quantity conditions. 

This would reveal a significant interaction. An analysis plan for Case 3 is given in Table W5. 

Case #4: Continuous x Continuous 

Spotlight analysis is typically used when the model includes the product of a typically 

manipulated, typically dichotomous factor and a typically measured, continuous factor. It may 

just as easily be used whether each factor is manipulated or measured, and when both factors are 

continuous. Consider a field study extension of the basic design that does not rely on the use of 

confederates: quantities taken by the observed consumer (no longer confederates) are now 

continuous and measured rather than dichotomous and manipulated. BMI’s of the observed 
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consumer are still continuous and measured. This change in the design clearly has implications 

for internal validity since observed consumers are no longer randomly assigned to quantity 

conditions, but we are focused on the statistical analysis. This model is exactly the same as in our 

original example of the 2 x Continuous variant of McFerran et al. (2010). The model is: 

(W8) Y = a + bZ + cX + dZX 

Z represents quantity taken, but now it represents a continuous variable, not a 

dichotomous one. The procedure remains the same and the interpretation of a, c, and d is 

analogous to before. To interpret the effect of (continuously varying) quantity on quantity taken 

by the participant, we again shine the spotlight on borderline overweight individuals by setting X’ 

= X – 25 and re-estimating the model Y = a’ + b’Z + c’X’ + d’ZX’. Here, b’ represents the effect 

of a one unit change in quantity taken by the observed consumer on quantity taken by the 

participant, holding constant the observed consumer’s BMI at borderline overweight. (There is 

no analysis template for Case #4 or Case #5 because the same principles from Table W1 apply.) 

Case #5: Quadratic 

 An important but not immediately obvious application of the Continuous x Continuous 

case is that it can aid in the interpretation when the simple slope in a quadratic model is 

significant. A quadratic model is essentially a variable interacting with itself. Imagine that we are 

examining the effect of quantity taken by thin confederates. We might find that assimilation is 

attenuated at very high levels of quantity taken, and so we are interested in how the effect of the 

marginal piece of candy taken varies as a function of how many candies are taken by the 

confederate. Our model would be:  

(W9) Y = a + bZ + cZ2.  
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The simple effect of Z (quantity taken as a continuous variable) is its derivative: b + 2cZ. 

Once again, the coefficient b represents the simple effect when Z is equal to 0. If we are 

interested in the effect of taking one more candy when the confederate has already taken 10 

candies, we can calculate Z’ = Z – 10 and regress Y on Z’ and Z’2. The coefficient on Z’ 

represents the marginal effect when Z’ = 0 or, equivalently, when Z = 10. One can interpret this 

simple effect as testing the slope of the line tangent to the curve for Z = 10.  
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BASE CASE 0: SIMPLE EFFECTS IN A 2 x CONTINUOUS DESIGN 

Y = a + bZ + cX + dZX 
 

A. BASELINE ANALYSIS 
 Intercept Manipulation Measured Variable Manipulation * Measured 
  Z X ZX 
Coding  0 = Control 

1 = Treatment 
Raw scale  

Coefficient a b c d 
Interpretation Estimate of Y when Z = 0 and X = 0, 

i.e., for Control group when X = 0 
Simple effect of Treatment vs. 
Control when X = 0 

Simple slope of Measured Variable 
on Y when Z = 0, i.e., for Control 
group  

Change in effect of Treatment vs. 
Control when Measured Variable 
increases by 1 unit  

 
B. TEST THE SIMPLE EFFECT OF TREATMENT VS. CONTROL AT FOCAL VALUE X = XFocal  

BY RECODING X SO THAT IT DROPS OUT OF THE EQUATION 
  Z X’ ZX’ 
Coding  0 = Control 

1 = Treatment 
X’ = X – XFocal  

Coefficient a’ b’ c’ d’ 
Equivalent to a + cXFocal b + dXFocal c d 
Interpretation Estimate of Y when Z = 0 and X’=0, 

i.e., for Control group when X = 
XFocal 

Simple effect of Treatment vs. 
Control when X’ = 0, i.e., when X = 
XFocal 

Simple slope of Measured Variable 
on Y when Z = 0, i.e., for Control 
group  

Change in effect of Treatment vs. 
Control when Measured Variable 
increases by 1 unit  

 
C. TEST THE SIMPLE SLOPE OF X IN TREATMENT GROUP BY RECODING Z SO THAT IT DROPS OUT OF THE EQUATION 

  Z” X Z”X 
Coding  1 = Control 

0 = Treatment 
Raw scale  

Coefficient a” b” c” d” 
Equivalent to a + b -b c + d -d 
Interpretation Estimate of Y when Z” = 0 and X = 

0, i.e., for Treatment group when X 
= 0 

Simple effect of Treatment vs. 
Control when X = 0 

Simple slope of Measured Variable 
on Y when Z” = 0, i.e., for 
Treatment group 

Difference in slope of Measured 
Variable between Control (Z” = 1) 
and Treatment (Z” = 0) 
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D. THE CONSEQUENCES OF USING CONTRAST CODES RATHER THAN DUMMY CODES 
  Z’’’ X Z’’’X 
Coding  -1 = Control 

1 = Treatment 
Raw scale  

Coefficient a’’’ b’’’ c’’’ d’’’ 
Equivalent to a + b/2 b/2 c + d/2 d/2 
Interpretation Estimate of Y when Z’’’ = 0 and X = 

0, i.e., unweighted average of group 
estimates when X = 0 

Half of simple effect of Treatment 
vs. Control when X = 0 

Simple slope of Measured Variable 
on Y when Z’’’ = 0, i.e., unweighted 
average of group slopes 

Half of difference in slope of 
Measured Variable between Control 
(Z’’’ = -1) and Treatment (Z’’’ = 1) 

 
Table W1. Simple effects in a 2 x Continuous design.
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CASE 1: SIMPLE EFFECTS IN A 2 (WITHIN) x CONTINUOUS DESIGN 

Y2 – Y1 = a + bX 
 

A. BASELINE ANALYSIS 
 Intercept Measured Variable 
  X 
Coding  Raw scale 
Coefficient a b 
Interpretation Estimate of Y2 – Y1 when X = 0, i.e., 

Simple effect of Treatment vs. 
Control when X = 0 

Slope of Measured Variable on (Y2 – 
Y1), i.e., Change in effect of 
Treatment vs. Control when 
Measured Variable increases by 1 
unit 

 
B. TEST THE SIMPLE EFFECT OF MANIPULATION AT FOCAL VALUE X = XFocal  

BY RECODING X SO THAT IT DROPS OUT OF THE EQUATION 
  X’ 
Coding  X’ = X – XFocal 
Coefficient a’ b’ 
Equivalent to a + bXFocal b 
Interpretation Estimate of Y2 – Y1 when X’ = 0, 

i.e., Simple effect of Treatment vs. 
Control when X = XFocal 

Slope of Measured Variable on (Y2 – 
Y1), i.e., Change in effect of 
Treatment vs. Control when 
Measured Variable increases by 1 
unit 

 
Table W2. Simple effects in a 2 (Within) x Continuous design. 
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CASE 2: SIMPLE EFFECTS IN A 2 x 2 x CONTINUOUS DESIGN 
Y = a + bZ + cW + dX + eZW + fZX + gWX + hZWX 

 
A. BASELINE ANALYSIS 

 Intercept Manipulation 1 Manipulation 2 Measured 
Variable 

Manipulation 1 
* Manipulation 
2 

Manipulation 1 
* Measured 
Variable 

Manipulation 2 
* Measured 
Variable 

Manipulation 1 
* Manipulation 
2 * Measured 
Variable

  Z W X ZW ZX WX ZWX

Coding  0 = Control 
1 = Treatment

0 = Group A 
1 = Group B

Raw scale     
Coefficient a b c d e f g h
Interpretation Estimate of Y 

when Z = 0, W = 
0, X = 0, i.e., for 
Control Group A 
when X = 0 

Simple simple 
effect of 
Treatment vs. 
Control when W 
= 0, X = 0, i.e., 
simple simple 
effect of 
Manipulation 1 
for Group A 
when X = 0

Simple simple 
effect of Group 
B vs. Group A 
when Z = 0, X = 
0, i.e., simple 
simple effect of 
Manipulation 2 
for the Control 
group when X = 
0

Simple simple 
slope of 
Measured 
Variable on Y 
when Z = 0, W = 
0, i.e., for 
Control Group A 

Simple 
interaction of 
Manipulation 1 x 
Manipulation 2 
when X = 0 

Change in effect 
of Treatment vs. 
Control when 
Measured 
Variable 
increases by 1 
unit for W = 0, 
i.e., for Group A.

Change in effect 
of Group B vs. 
Group A when 
Measured 
Variable 
increases by 1 
unit for Z = 0, 
i.e., for the 
Control group. 

Change in 
Manipulation 1 x 
Manipulation 2 
interaction when 
Measured 
Variable 
increases by 1 
unit 

 
B. TEST THE SIMPLE INTERACTION OF MANIPULATION 1 (Z) x MANIPULATION 2 (W) AT FOCAL VALUE X = XFocal BY 

RECODING X SO THAT IT DROPS OUT OF THE EQUATION 
  Z W X’ ZW ZX’ WX’ ZWX’

Coding  0 = Control 
1 = Treatment

0 = Group A 
1 = Group B

X’ = X – XFocal     
Coefficient a’ b’ c’ d’ e’ f’ g’ h’
Equivalent to a + dXFocal b + fXFocal c + gXFocal d e + hXFocal f g h 
Interpretation Estimate of Y 

when Z = 0, W = 
0, X’ = 0, i.e., 
for Control 
Group A when 
X = XFocal 

Simple simple 
effect of 
Treatment vs. 
Control when W 
= 0, X’ = 0, i.e., 
simple simple 
effect of 
Manipulation 1 
for Group A 
when X = XFocal 

Simple simple 
effect of Group 
B vs. Group A 
when Z = 0, X’ 
= 0, i.e., simple 
simple effect of 
Manipulation 2 
for the Control 
group when X = 
XFocal 

Simple simple 
slope of 
Measured 
Variable on Y 
when Z = 0, W = 
0, i.e., for 
Control Group A

Simple 
interaction of 
Manipulation 1 x 
Manipulation 2 
when X’ = 0, 
i.e., when X = 
XFocal 

Change in effect 
of Treatment vs. 
Control when 
Measured 
Variable 
increases by 1 
unit for W = 0, 
i.e., for Group 
A. 

Change in effect 
of Group B vs. 
Group A when 
Measured 
Variable 
increases by 1 
unit for Z = 0, 
i.e., for the 
Control group. 

Change in 
Manipulation 1 x 
Manipulation 2 
interaction when 
Measured 
Variable 
increases by 1 
unit 
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C. TEST THE SIMPLE INTERACTION OF MANIPULATION 1 (Z) BY X AT LEVEL W = WNew0 BY RECODING W SO THAT IT IS 0 

FOR THAT LEVEL SO THAT W DROPS OUT OF THE EQUATION 
  Z W” X ZW” ZX W”X ZW”X

Coding  0 = Control 
1 = Treatment

1 = Group A 
0 = Group B

Raw scale     
Coefficient a” b” c” d” e” f” g” h”
Equivalent to a + c b + e -c d + g -e f + h -g -h 
Interpretation Estimate of Y 

when Z = 0, W” 
= 0, X = 0, i.e., 
for Control 
Group B when X 
= 0 

Simple simple 
effect of 
Treatment vs. 
Control when 
W” = 0, X = 0, 
i.e., simple 
simple effect of 
Manipulation 1 
for Group B 
when X = 0

Simple simple 
effect of Group 
A vs. Group B 
when Z = 0, X = 
0, i.e., simple 
simple effect of 
Manipulation 2 
for the Control 
group when X = 
0

Simple simple 
slope of 
Measured 
Variable on Y 
when Z = 0, W” 
= 0, i.e., for 
Control Group B 

Simple 
interaction of 
Manipulation 1 x 
Manipulation 2 
when X = 0 

Difference in 
slope of 
Measured 
Variable 
between 
Treatment (Z = 
1) and Control 
(Z = 0) when W" 
= 0, i.e., for 
Group B.

Difference in 
slope of 
Measured 
Variable 
between Group 
A (W" = 1) and 
Group B (W" = 
0) when Z = 0, 
i.e., for the 
Control group.

Difference in 
Group A vs. 
Group B 
difference in 
slope of 
Measured 
Variable 
between 
Treatment and 
Control

 Note—In conducting an ANOVA of three dichotomous variables, one will typically report main effects, two-way interactions, and 
the three-way interaction. In the analysis above, we emphasize simple-simple effects and simple interactions. In the 2 x 2 x continuous 
case, one may easily elicit the analogous overall effect terms, rather than simple effect terms, through judicious recoding such that 0 
represents the average rather than one condition or a focal point. These are of particular interest if higher-order interactions are not 
statistically significantly different from 0.  

x To examine the effect of one variable averaged across the sample (analogous to a main effect in ANOVA), mean-center all 
interacting variables. For example, given equal cell sizes, to examine the effect of X averaged across the sample, code Z such 
that -1 = Control, 1 = Treatment and code W such that -1 = Group A, 1 = Group B. Note that each coefficient reflects a one-
unit change, so the difference between two contrast-coded conditions (2 units) is twice the coefficient (as shown in Table 
W1D). 

x To examine the effect of a two-way interaction averaged across the sample (analogous to a two-way interaction in ANOVA), 
mean-center the interacting variable. For example, to examine the interaction effect of X and W averaged across the sample, 
mean-center Z, which in the equal N case, leads to contrast codes -1 = Control, 1 = Treatment.  

x To examine the interaction effect of Z and W, mean-center X.  
x None of these recoding schemes impacts the implications of the three-way interaction term, though its estimate may nominally 

change if one scale has been expanded (e.g., 0, 1 to -1, 1) or reversed (e.g., 0, 1 to 1, 0). 
 
Table W3. Simple effects in a 2 x 2 x Continuous design. 
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A. 
 

Variable Coefficient Estimate Standard 
Error 

t p 

intercept 
 

a 9.21 3.51 2.63 0.01 

small quantity taken 
 

b1 -5.56 5.07 -1.10 0.27 

large quantity taken 
 

b2 13.00 5.05 2.57 0.01 

confederate BMI 
 

c 0.02 0.16 0.12 0.90 

small quantity taken * 
confederate BMI 

 

d1 0.17 0.23 0.75 0.45 

large quantity taken * 
confederate BMI 

d2 -0.40 0.23 -1.70 0.09 

 
B. 
 

Variable Coefficient Estimate Standard 
Error 

t p 

intercept 
 

a’ 9.71 0.74 13.20 0.0001 

small quantity taken 
 

b1’ -1.27 0.97 -1.30 0.19 

large quantity taken 
 

b2’ 3.12 1.05 2.98 0.003 

confederate BMI – 25 
 

c’ 0.02 0.16 0.12 0.90 

small quantity taken * 
(confederate BMI – 25) 

 

d1’ 0.17 0.23 0.75 0.45 

large quantity taken * 
(confederate BMI – 25) 

d2’ -0.40 0.23 -1.70 0.09 

 
 
Table W4. Regression results of fictitious illustrative data for the 3 x Continuous case, where the 
confederate takes either 2 candies (Z1 = 1, Z2 = 0), 30 Candies (Z1 = 0, Z2 = 1), or the confederate 
does not have an opportunity to take any candies (Z1 = 0, Z2 = 0). Panel A: X is the confederate’s 
BMI. Panel B: X’ is the confederate’s BMI – 25.  
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CASE 3: SIMPLE EFFECTS IN A 3 x CONTINUOUS DESIGN 
Y = a + b1Z1 + b2Z2 + cX + d1Z1X + d2Z2X 

 
A. BASELINE ANALYSIS 

 Intercept Manipulation Manipulation Measured Variable Manipulation * 
Measured Variable 

Manipulation * 
Measured Variable 

  Z1 Z2 X Z1X Z2X 
Coding  0 = Control 

1 = Treatment 1 
0 = Treatment 2 

0 = Control 
0 = Treatment 1 
1 = Treatment 2 

Raw scale   

Coefficient a b1 b2 c d1 d2 

Interpretation Estimate of Y when Z1 
= 0, Z2 = 0, and X = 0, 
i.e., for Control group 
when X = 0 

Simple effect of 
Treatment 1 vs. Control 
when X = 0 

Simple effect of 
Treatment 2 vs. 
Control when X = 0 

Simple slope of 
Measured Variable on Y 
when Z1 = 0 and Z2 = 0, 
i.e., for Control group 

Change in effect of 
Treatment 1 vs. 
Control when 
Measured Variable 
increases by 1 unit  

Change in effect of 
Treatment 2 vs. Control 
when Measured 
Variable increases by 1 
unit  

 
B. TEST THE SIMPLE EFFECT OF TREATMENT 1 VS. CONTROL AT FOCAL VALUE X = XFocal  

BY RECODING X SO THAT IT DROPS OUT OF THE EQUATION 
  Z1 Z2 X’ Z1X’ Z2X’ 
Coding   0 = Control 

1 = Treatment 1 
0 = Treatment 2 

0 = Control 
0 = Treatment 1 
1 = Treatment 2 

X’ = X – XFocal   

Coefficient a’ b1’ b2’ c’ d1’ d2’ 
Equivalent to a + cXFocal b1 + d1XFocal b2 + d2XFocal c d1 d2 

Interpretation Estimate of Y when Z1 
= 0, Z2 = 0, and X’ = 0, 
i.e., for Control group 
when X = XFocal 

Simple effect of 
Treatment 1 vs. Control 
when X’ = 0, i.e., when 
X = XFocal 

Simple effect of 
Treatment 2 vs. Control 
when X’ = 0, i.e., when 
X = XFocal 

Simple slope of 
Measured Variable on Y 
when Z1 = 0 and Z2 = 0, 
i.e., for Control group  

Change in effect of 
Treatment 1 vs. 
Control when 
Measured Variable 
increases by 1 unit  

Change in effect of 
Treatment 2 vs. Control 
when Measured 
Variable increases by 1 
unit  
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C. TEST THE SIMPLE SLOPE OF X IN TREATMENT 1 BY RECODING Z1 SO THAT IT DROPS OUT OF THE EQUATION 
  Z1” Z2 X Z1”X Z2X 
Coding  1 = Control 

0 = Treatment 1 
0 = Treatment 2 

0 = Control 
0 = Treatment 1 
1 = Treatment 2 

Raw scale   

Coefficient a” b1” b2” c” d1” d2” 
Equivalent to a + b1 -b1 b2 – b1 c + d1 -d1 d2 – d1 

Interpretation Estimate of Y when Z1” 
= 0, Z2 = 0, and X = 0, 
i.e., for Treatment 1 
group when X = 0 

Simple effect of 
Control vs. Treatment 1 
when X = 0 

Simple effect of 
Treatment 2 vs. 
Treatment 1 when X = 
0 

Simple slope of Measured 
Variable on Y when Z1” = 
0 and Z2 = 0, i.e., for 
Treatment 1 group 

Difference in slope of 
Measured Variable 
between Control (Z1” 
= 1) and Treatment 1 
(Z1” = 0) 

Difference in slope of 
Measured Variable 
between Treatment 2 
(Z2 = 1) and 
Treatment 1 (Z2 = 0) 

 
Table W5. Simple effects in a 3 x Continuous design. 
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Web Appendix B 

Why Not Test at Plus and Minus One Standard Deviation? 

Researchers most commonly will first mean-center their continuous measure, and then 

transform it to spotlight the effect of the manipulation at plus and minus one standard deviation 

from the mean; these values were suggested by Cohen and Cohen (1983) for cases where there 

are no substantively meaningful values. This approach is not wrong, but we would argue that it is 

suboptimal and we cannot generate a case where it would be the preferred approach. Using the 

BMI example, depending on the sample, one standard deviation above the mean might be 

“normal” weight or it might be clinically obese. Moreover, it is hard to argue that we should be 

more interested in the effect of Z at exactly one standard deviation above the mean of X in this 

particular sample than in values slightly higher or slightly lower.  

There are three main problems of testing at plus and minus one standard deviation. First, 

if the distribution of the moderator X is skewed, one of those values can be outside the range of 

the data. Second, if the moderator X is on a coarse scale, it may be impossible to have a value of 

X exactly equal to plus or minus one standard deviation. Third, if two researchers replicate the 

same study with samples of very different mean levels of the moderator, it can appear that they 

fail to replicate each other even when they find exactly the same regression equation in raw score 

units. This problem is exacerbated by the tendency for authors using the plus and minus one 

standard deviation approach to fail to report the mean and standard deviation of X. 

As an example of these issues and how to solve them, Fernbach et al. (2013) exposed 

respondents to product concepts that gave high, medium, or low levels of causal detail for why 

and how a new product delivered a claimed benefit and asked how well respondents understood 

the concept. Fernbach et al. showed that people who score high on Frederick’s (2005) Cognitive 
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Reflection Test (CRT) believed that they understood the concept better when more causal detail 

was given, but people who scored low believed they understood the concept better when low 

causal detail was given. The CRT scale is a 3-item quiz resulting in a score of 0, 1, 2, or 3 

questions right. Fernbach et al. chose to report the test of the simple effect of the manipulation of 

causal detail at real possible scores of 0 and 3 rather than to report tests at fractional values of 

CRT at plus and minus one standard deviation from the mean. Fractional scores are impossible 

for any individual participant to receive.  

Moreover, in this particular example the distribution of CRT is skewed, so it would be 

easy to have a value one standard deviation below the mean that is actually below zero in a 

particular sample. It would have been meaningless to test such a simple effect that is outside the 

range of the data. For example, Frederick (2005) reports distributions of CRT scores across 

several different institutions. Had Fernbach et al. (2013) tested their hypothesis one standard 

deviation above and below the mean with Frederick’s MIT sample (M = 2.18, SD = 0.94), one 

standard deviation above the mean would have been an impossibly high value. If they tested their 

hypothesis one standard deviation above and below the mean with Frederick’s University of 

Toledo sample (M = 0.57, SD = 0.87), one standard deviation below the mean would have been 

an impossibly low value. Unfortunately, the modal reporting strategy is to omit reporting the 

distribution of the individual difference measure in the sample. Had Fernbach conducted one 

study at MIT and one at Toledo and examined simple effects at one standard deviation above and 

below the means without reporting the sample distribution, the simple effects would have 

appeared to be inconsistent because the distributions of CRT differed so much. Determining 

whether results replicated across samples without knowing their distributions would be 

impossible. This is not a problem for interpreting a study in isolation, but for comparing studies. 


